首页> 外文OA文献 >Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type
【2h】

Evaluation of some non-elementary integrals of sine, cosine and exponential integrals type

机译:正弦,余弦和正弦的一些非基本积分的评价   指数积分型

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The non-elementary integrals $\text{Si}_{\beta,\alpha}=\int [\sin{(\lambdax^\beta)}/(\lambda x^\alpha)] dx$ and $\text{Ci}_{\beta,\alpha}=\int[\cos{(\lambda x^\beta)}/(\lambda x^\alpha)] dx$, where $\beta\ge1$ and$\alpha\ge1$, are evaluated in terms of the hypergeometric functions $_{1}F_2$and $_{2}F_3$ respectively, and their asymptotic expressions for $|x|\gg1$ arederived. Integrals of the form $\int [\sin^n{(\lambda x^\beta)}/(\lambdax^\alpha)] dx$ and $\int [\cos^n{(\lambda x^\beta)}/(\lambda x^\alpha)] dx$,where n is a positive integer, are expressed in terms$\text{Si}_{\beta,\alpha}$ and $\text{Ci}_{\beta,\alpha}$, and then evaluated. On the other hand, $\text{Si}_{\beta,\alpha}$ and $\text{Ci}_{\beta,\alpha}$are evaluated in terms of the hypergeometric function $_{2}F_2$. And so, thehypergeometric functions, $_{1}F_2$ and $_{2}F_3$, are expressed in terms of$_{2}F_2$. The integral $\text{Ei}_{\beta,\alpha}=\int (e^{\lambda x^\beta}/x^\alpha)dx$ where $\beta\ge1$ and $\alpha\ge1$, and the logarithmic integral$\text{Li}=\int_{2}^{x} dt/\ln{t}$, are expressed in terms of $_{2}F_2$, andtheir asymptotic expressions are investigated. It is found that $\text{Li}\sim{x}/{\ln{x}}+\ln{\left(\frac{\ln{x}}{\ln{2}}\right)}-2- \ln{2}\hspace{.075cm}_{2}F_{2}(1,1;2,2;\ln{2})$, where the term$\ln{\left(\frac{\ln{x}}{\ln{2}}\right)}-2- \ln{2}\hspace{.075cm}_{2}F_{2}(1,1;2,2;\ln{2})$ is negligible if $x\sim O(10^6)$ or higher.
机译:非基本积分$ \ text {Si} _ {\ beta,\ alpha} = \ int [\ sin {(\ lambdax ^ \ beta)} /(\ lambda x ^ \ alpha)] dx $和$ \ text {Ci} _ {\ beta,\ alpha} = \ int [\ cos {(\ lambda x ^ \ beta)} /(\ lambda x ^ \ alpha)] dx $,其中$ \ beta \ ge1 $和$ \ alpha \ ge1 $分别根据超几何函数$ _ {1} F_2 $和$ _ {2} F_3 $进行求值,并推导出它们对于$ | x | \ gg1 $的渐近表达式。 $ \ int [\ sin ^ n {(\ lambda x ^ \ beta)} /(\\ lambdax ^ \ alpha)] dx $和$ \ int [\ cos ^ n {(\ lambda x ^ \ beta }} /(\ lambda x ^ \ alpha)] dx $,其中n是一个正整数,用$ \ text {Si} _ {\ beta,\ alpha} $和$ \ text {Ci} _ { \ beta,\ alpha} $,然后求值。另一方面,根据超几何函数$ _ {2} F_2计算$ \ text {Si} _ {\ beta,\ alpha} $和$ \ text {Ci} _ {\ beta,\ alpha} $ $。因此,超几何函数$ _ {1} F_2 $和$ _ {2} F_3 $用$ _ {2} F_2 $表示。整数$ \ text {Ei} _ {\ beta,\ alpha} = \ int(e ^ {\ lambda x ^ \ beta} / x ^ \ alpha)dx $其中$ \ beta \ ge1 $和$ \ alpha \ ge1 $和对数积分$ \ text {Li} = \ int_ {2} ^ {x} dt / \ ln {t} $表示为$ _ {2} F_2 $,并研究了它们的渐近表达式。发现$ \ text {Li} \ sim {x} / {\ ln {x}} + \ ln {\ left(\ frac {\ ln {x}} {\ ln {2}} \ right)} -2- \ ln {2} \ hspace {.075cm} _ {2} F_ {2}(1,1; 2,2; \ ln {2})$,其中术语$ \ ln {\ left(\ frac {\ ln {x}} {\ ln {2}} \ right)}-2- \ ln {2} \ hspace {.075cm} _ {2} F_ {2}(1,1; 2,2;如果$ x \ sim O(10 ^ 6)$或更高,则\ ln {2})$可以忽略。

著录项

  • 作者

    Nijimbere, Victor;

  • 作者单位
  • 年度 2017
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号